Masukkan soal...
Matematika Berhingga Contoh
Langkah 1
Langkah 1.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Langkah 1.1.1
Consider the corresponding sign chart.
Langkah 1.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Langkah 1.1.3
The minor for is the determinant with row and column deleted.
Langkah 1.1.4
Multiply element by its cofactor.
Langkah 1.1.5
The minor for is the determinant with row and column deleted.
Langkah 1.1.6
Multiply element by its cofactor.
Langkah 1.1.7
The minor for is the determinant with row and column deleted.
Langkah 1.1.8
Multiply element by its cofactor.
Langkah 1.1.9
The minor for is the determinant with row and column deleted.
Langkah 1.1.10
Multiply element by its cofactor.
Langkah 1.1.11
Add the terms together.
Langkah 1.2
Evaluasi .
Langkah 1.2.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Langkah 1.2.1.1
Consider the corresponding sign chart.
Langkah 1.2.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Langkah 1.2.1.3
The minor for is the determinant with row and column deleted.
Langkah 1.2.1.4
Multiply element by its cofactor.
Langkah 1.2.1.5
The minor for is the determinant with row and column deleted.
Langkah 1.2.1.6
Multiply element by its cofactor.
Langkah 1.2.1.7
The minor for is the determinant with row and column deleted.
Langkah 1.2.1.8
Multiply element by its cofactor.
Langkah 1.2.1.9
Add the terms together.
Langkah 1.2.2
Evaluasi .
Langkah 1.2.2.1
Determinan dari matriks dapat dicari menggunakan rumus .
Langkah 1.2.2.2
Sederhanakan determinannya.
Langkah 1.2.2.2.1
Sederhanakan setiap suku.
Langkah 1.2.2.2.1.1
Kalikan dengan .
Langkah 1.2.2.2.1.2
Kalikan dengan .
Langkah 1.2.2.2.2
Kurangi dengan .
Langkah 1.2.3
Evaluasi .
Langkah 1.2.3.1
Determinan dari matriks dapat dicari menggunakan rumus .
Langkah 1.2.3.2
Sederhanakan determinannya.
Langkah 1.2.3.2.1
Sederhanakan setiap suku.
Langkah 1.2.3.2.1.1
Kalikan dengan .
Langkah 1.2.3.2.1.2
Kalikan dengan .
Langkah 1.2.3.2.2
Kurangi dengan .
Langkah 1.2.4
Evaluasi .
Langkah 1.2.4.1
Determinan dari matriks dapat dicari menggunakan rumus .
Langkah 1.2.4.2
Sederhanakan determinannya.
Langkah 1.2.4.2.1
Sederhanakan setiap suku.
Langkah 1.2.4.2.1.1
Kalikan dengan .
Langkah 1.2.4.2.1.2
Kalikan dengan .
Langkah 1.2.4.2.2
Kurangi dengan .
Langkah 1.2.5
Sederhanakan determinannya.
Langkah 1.2.5.1
Sederhanakan setiap suku.
Langkah 1.2.5.1.1
Kalikan dengan .
Langkah 1.2.5.1.2
Kalikan dengan .
Langkah 1.2.5.1.3
Kalikan dengan .
Langkah 1.2.5.2
Tambahkan dan .
Langkah 1.2.5.3
Tambahkan dan .
Langkah 1.3
Evaluasi .
Langkah 1.3.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Langkah 1.3.1.1
Consider the corresponding sign chart.
Langkah 1.3.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Langkah 1.3.1.3
The minor for is the determinant with row and column deleted.
Langkah 1.3.1.4
Multiply element by its cofactor.
Langkah 1.3.1.5
The minor for is the determinant with row and column deleted.
Langkah 1.3.1.6
Multiply element by its cofactor.
Langkah 1.3.1.7
The minor for is the determinant with row and column deleted.
Langkah 1.3.1.8
Multiply element by its cofactor.
Langkah 1.3.1.9
Add the terms together.
Langkah 1.3.2
Evaluasi .
Langkah 1.3.2.1
Determinan dari matriks dapat dicari menggunakan rumus .
Langkah 1.3.2.2
Sederhanakan determinannya.
Langkah 1.3.2.2.1
Sederhanakan setiap suku.
Langkah 1.3.2.2.1.1
Kalikan dengan .
Langkah 1.3.2.2.1.2
Kalikan dengan .
Langkah 1.3.2.2.2
Kurangi dengan .
Langkah 1.3.3
Evaluasi .
Langkah 1.3.3.1
Determinan dari matriks dapat dicari menggunakan rumus .
Langkah 1.3.3.2
Sederhanakan determinannya.
Langkah 1.3.3.2.1
Sederhanakan setiap suku.
Langkah 1.3.3.2.1.1
Kalikan dengan .
Langkah 1.3.3.2.1.2
Kalikan dengan .
Langkah 1.3.3.2.2
Kurangi dengan .
Langkah 1.3.4
Evaluasi .
Langkah 1.3.4.1
Determinan dari matriks dapat dicari menggunakan rumus .
Langkah 1.3.4.2
Sederhanakan determinannya.
Langkah 1.3.4.2.1
Sederhanakan setiap suku.
Langkah 1.3.4.2.1.1
Kalikan dengan .
Langkah 1.3.4.2.1.2
Kalikan dengan .
Langkah 1.3.4.2.2
Kurangi dengan .
Langkah 1.3.5
Sederhanakan determinannya.
Langkah 1.3.5.1
Sederhanakan setiap suku.
Langkah 1.3.5.1.1
Kalikan dengan .
Langkah 1.3.5.1.2
Kalikan dengan .
Langkah 1.3.5.1.3
Kalikan dengan .
Langkah 1.3.5.2
Tambahkan dan .
Langkah 1.3.5.3
Tambahkan dan .
Langkah 1.4
Evaluasi .
Langkah 1.4.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Langkah 1.4.1.1
Consider the corresponding sign chart.
Langkah 1.4.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Langkah 1.4.1.3
The minor for is the determinant with row and column deleted.
Langkah 1.4.1.4
Multiply element by its cofactor.
Langkah 1.4.1.5
The minor for is the determinant with row and column deleted.
Langkah 1.4.1.6
Multiply element by its cofactor.
Langkah 1.4.1.7
The minor for is the determinant with row and column deleted.
Langkah 1.4.1.8
Multiply element by its cofactor.
Langkah 1.4.1.9
Add the terms together.
Langkah 1.4.2
Evaluasi .
Langkah 1.4.2.1
Determinan dari matriks dapat dicari menggunakan rumus .
Langkah 1.4.2.2
Sederhanakan determinannya.
Langkah 1.4.2.2.1
Sederhanakan setiap suku.
Langkah 1.4.2.2.1.1
Kalikan dengan .
Langkah 1.4.2.2.1.2
Kalikan dengan .
Langkah 1.4.2.2.2
Kurangi dengan .
Langkah 1.4.3
Evaluasi .
Langkah 1.4.3.1
Determinan dari matriks dapat dicari menggunakan rumus .
Langkah 1.4.3.2
Sederhanakan determinannya.
Langkah 1.4.3.2.1
Sederhanakan setiap suku.
Langkah 1.4.3.2.1.1
Kalikan dengan .
Langkah 1.4.3.2.1.2
Kalikan dengan .
Langkah 1.4.3.2.2
Kurangi dengan .
Langkah 1.4.4
Evaluasi .
Langkah 1.4.4.1
Determinan dari matriks dapat dicari menggunakan rumus .
Langkah 1.4.4.2
Sederhanakan determinannya.
Langkah 1.4.4.2.1
Sederhanakan setiap suku.
Langkah 1.4.4.2.1.1
Kalikan dengan .
Langkah 1.4.4.2.1.2
Kalikan dengan .
Langkah 1.4.4.2.2
Kurangi dengan .
Langkah 1.4.5
Sederhanakan determinannya.
Langkah 1.4.5.1
Sederhanakan setiap suku.
Langkah 1.4.5.1.1
Kalikan dengan .
Langkah 1.4.5.1.2
Kalikan dengan .
Langkah 1.4.5.1.3
Kalikan dengan .
Langkah 1.4.5.2
Tambahkan dan .
Langkah 1.4.5.3
Tambahkan dan .
Langkah 1.5
Evaluasi .
Langkah 1.5.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Langkah 1.5.1.1
Consider the corresponding sign chart.
Langkah 1.5.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Langkah 1.5.1.3
The minor for is the determinant with row and column deleted.
Langkah 1.5.1.4
Multiply element by its cofactor.
Langkah 1.5.1.5
The minor for is the determinant with row and column deleted.
Langkah 1.5.1.6
Multiply element by its cofactor.
Langkah 1.5.1.7
The minor for is the determinant with row and column deleted.
Langkah 1.5.1.8
Multiply element by its cofactor.
Langkah 1.5.1.9
Add the terms together.
Langkah 1.5.2
Evaluasi .
Langkah 1.5.2.1
Determinan dari matriks dapat dicari menggunakan rumus .
Langkah 1.5.2.2
Sederhanakan determinannya.
Langkah 1.5.2.2.1
Sederhanakan setiap suku.
Langkah 1.5.2.2.1.1
Kalikan dengan .
Langkah 1.5.2.2.1.2
Kalikan dengan .
Langkah 1.5.2.2.2
Kurangi dengan .
Langkah 1.5.3
Evaluasi .
Langkah 1.5.3.1
Determinan dari matriks dapat dicari menggunakan rumus .
Langkah 1.5.3.2
Sederhanakan determinannya.
Langkah 1.5.3.2.1
Sederhanakan setiap suku.
Langkah 1.5.3.2.1.1
Kalikan dengan .
Langkah 1.5.3.2.1.2
Kalikan dengan .
Langkah 1.5.3.2.2
Kurangi dengan .
Langkah 1.5.4
Evaluasi .
Langkah 1.5.4.1
Determinan dari matriks dapat dicari menggunakan rumus .
Langkah 1.5.4.2
Sederhanakan determinannya.
Langkah 1.5.4.2.1
Sederhanakan setiap suku.
Langkah 1.5.4.2.1.1
Kalikan dengan .
Langkah 1.5.4.2.1.2
Kalikan dengan .
Langkah 1.5.4.2.2
Kurangi dengan .
Langkah 1.5.5
Sederhanakan determinannya.
Langkah 1.5.5.1
Sederhanakan setiap suku.
Langkah 1.5.5.1.1
Kalikan dengan .
Langkah 1.5.5.1.2
Kalikan dengan .
Langkah 1.5.5.1.3
Kalikan dengan .
Langkah 1.5.5.2
Tambahkan dan .
Langkah 1.5.5.3
Tambahkan dan .
Langkah 1.6
Sederhanakan determinannya.
Langkah 1.6.1
Sederhanakan setiap suku.
Langkah 1.6.1.1
Kalikan dengan .
Langkah 1.6.1.2
Kalikan dengan .
Langkah 1.6.1.3
Kalikan dengan .
Langkah 1.6.1.4
Kalikan dengan .
Langkah 1.6.2
Tambahkan dan .
Langkah 1.6.3
Tambahkan dan .
Langkah 1.6.4
Tambahkan dan .
Langkah 2
There is no inverse because the determinant is .